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Physicochemical and functional properties of proteins were modeled as a function of the contributions
of each of the 20 coded amino acids to three (z-scores) or five (extended z-scores) amino acid principal
properties using partial least squares regression. The five term models were in all cases stronger in
both fit and prediction than the three term models, indicating that useful information is contained in
the fourth and fifth property scores. Models predicting protein hydrophobicity (R ) 0.932), viscosity
(R ) 0.737), and foam capacity (R ) 0.880) from amino acid composition rather than sequence
were obtained. It is likely that additional functional and physicochemical properties of proteins can
be modeled in this way.
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INTRODUCTION

It was previously shown that it is possible to model biological
properties of small peptides as a function of amino acid principal
properties (1, 2). These were derived by carrying out principal
components analysis (PCA) of numerous amino acid properties
for all of the common coded amino acids as well as a number
of noncoded ones. The authors called the first three principal
component scores of each amino acid itsz1, z2, andz3 scores or
principal properties. These were interpreted to represent largely
hydrophilicity, side chain bulk/molecular size, and electronic
properties, respectively. The three principal properties for the
amino acid in each position in a peptide were then used to
construct models. For example, a model of dipeptide bitterness
of the following form was developed (2)

wherey is the bitterness, theb values are regression coefficients,
and thezvalues are the threez-scores for each of the two amino
acids in the dipeptide sequence (e.g.,z21 is thez2 score for the
first, or N-terminal, amino acid in the dipeptide). The multiple
correlation coefficient,R, was 0.88 for the dipeptide bitterness
model. Bradykinin potentiating activity of pentapeptides was
fit to a 15-term model (threez-scores× five amino acids) with
R ) 0.90. The general formula for this approach can be written
as the summation

for a peptide of lengthn amino acids.

This approach produced good models for small peptides but
has the disadvantage for those larger than a few amino acids
than the number of terms to fit, and as a result, the number of
peptides needed to construct a model is large.

There are, however, some special cases in which large
peptides can be modeled with fewer terms (3). In a homopoly-
mer, all of the amino acids in the peptide are the same; it was
possible to model the Coomassie blue dye binding response to
homopolymers as a function of the threez-scores for the amino
acid comprising the homopolymer (R) 0.926).

Some peptide properties result from the proportion of only
one or a few amino acids. It was possible to model two of these
situations from the number of moles of the relevant amino acids
in the protein (3). In the following fitsQ, the cross-validated
multiple correlation coefficient, is given as well asR. TheQ is
considered to represent the predictive ability of a model, while
R is an estimate of model fit (4). R increases with increasing
model complexity (terms or components) and can be over-
optimistic. As model complexity increases,Q reaches a maxi-
mum at the point where complexity and fit are balanced.
Coomassie blue dye binding of proteins was modeled in terms
of their contents of three basic and three aromatic amino acids
(R ) 0.976;Q ) 0.572). UV absorbance of proteins depends
only on tyrosine, tryptophan, and cysteine (5); this hadR )
0.995 andQ ) 0.988 (3). It was also possible to construct
models based on the algebraic sums of the contributions of the
relevant amino acids to each of the three principal properties
(3). In the case of UV absorbance at 280 nm, the contributions
to z1 of tyrosine (Y), tryptophan (W), and cysteine (C) were
estimated by multiplying the number of moles of each of these
amino acids in the protein by itsz1-score and summing
algebraically:
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y ) b11z11 + b21z21 + b31z31 + b12z12 + b22z22 + b32z32 (1)

y ) ∑
j)1

n

∑
i)1

3

bijzij (2)

∑z1 ) z1YnY + z1WnW + z1CnC (3)
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The contributions toz2 andz3 (∑z2 and∑z3) were computed in
an analogous manner. A model expressing the molar absorptivity
of a protein at 280 nm,ε, as a function of thesez-score sums
was then developed (3).

This had an identical fit to the model based simply on the moles
of each amino acid (R ) 0.995) and a marginally better
prediction ability (Q ) 0.992). When the same approach was
applied to Coomassie blue response to proteins, the fit (R )
0.935) was not as good as with the six term model but the
predictive ability (Q) 0.890) was much better (3).

Recently, the amino acid principal property approach was
expanded to a larger set of amino acids (20 coded+ 67
noncoded) and more parameters (6). Application of PCA
resulted in a set of five orthogonal axes termed extendedz-scales
(ext-z), of which the first three largely corresponded to the
original z-scales. The ext-z1-scale was interpreted to largely
represent hydrophilicity (similar to the originalz1-scale). The
ext-z2-scale corresponded to molecular size (similar toz2). The
ext-z3-scale was similar toz3 and was described as representing
electronic properties. The ext-z4- and ext-z5-scales were more
complicated. The ext-z4-scale was associated positively with heat
of formation and negatively with electronegativity, both esti-
mated from molecular orbital calculations. The ext-z5-scale was
associated with “hardness” and the energy levels of the highest
occupied and the lowest unoccupied molecular orbitals, again
from molecular orbital calculations, and NMRR-proton shift
observations. The extendedz-scores were applied in modeling
two peptide data sets, elastase substrates and neurotensin
analogues, and performed well. This suggested that more than
three principal properties may be useful to represent behavior
in some cases.

One of the situations where the proportion of amino acids of
different types rather than a precise sequence is thought to
impact protein properties is in what are called by food chemists
functional properties. Various functional properties have been
listed by different authors and include solubility, wettability,
gelation, fat binding, water binding, emulsifying capacity, and
foam, film, and glass formation (7-11). A number of physi-
cochemical properties (hydrophobicity, melting point, etc.) have
been related to the proportions of individual amino acids or
particular classes of amino acids (e.g., acidic, basic, hydrophilic,
hydrophobic, aromatic, etc.) in a protein (8). A number of the
functional properties have in turn been related to protein
physicochemical properties (8, 12). For example, hydrophobic-
ity, either in a domain or of an entire protein, is associated with
foaming, gel formation, and binding of nonpolar flavor com-
pounds (8,13).

It was of interest to see if it was possible to model
physicochemical and functional properties of proteins in terms
of their amino acid composition and principal property scores.

MATERIALS AND METHODS

Data reported by Townsend and Nakai (14) for Bigelow hydropho-
bicity, exposed hydrophobicity, viscosity, and foam capacity under
several conditions of pH and ionic strength for a number of well-
characterized proteins were used. The amino acid sequences for the
proteins were obtained from the Swiss-Prot Protein Knowledgebase
(Swiss Institute for Bioinformatics and European Bioinformatics
Institute, http://www.wbi.ac.uk/swissprot). The sequences were con-
verted into composition (i.e., the number of moles of each amino acid
in the protein) using the Southampton Bioinformatics Data Server web
site (http://molbiol.soton.ac.uk) of the University of Southampton, U.K.

The amino acidz-scores used were those reported by Jonsson et al.
(2). The extendedz-scores were from Sandberg et al. (6). Sums of
each of the threez-scores (∑zi) and each of the five extendedz-scores
(∑ext-zi) for a protein were computed by multiplying the appropriate
score (e.g.,z1) for each amino acid by the number of moles (n) of that
amino acid in the protein and then summing algebraically. So, for∑zi:

whereX represents each of the 20 coded amino acids in a protein.
Modeling of the property data as a function of amino acid

composition was carried out by partial least squares regression (PLSR)
using the SIMCA-S for Windows computer program v 6.01 (Umetrics
Inc., Kinnelon, NJ); this provided estimates of model fit (the multiple
correlation coefficient,R) and predictive ability (the cross-validated
correlation coefficient,Q). The SIMCA-S program uses cross-validation
of models calculated with increasing numbers of components to
determine the best prediction model (the minimum number of com-
ponents needed to achieve the bestQ). Comparison of the relative
influence of the terms was made using the variable importance in the
projection (VIP) calculation provided by the SIMCA-S program (15).

RESULTS AND DISCUSSION

In functional properties of proteins as in nearly all of the
interactions of peptides in biological systems, the interactions
are noncovalent. We know of only a limited number of
mechanisms for noncovalent interactions: mainly ionic bonding,
hydrophobic bonding, hydrogen bonding, and van der Waals
interactions. It seems likely that various combinations of these
phenomena are involved in different proportions in particular
protein properties. If only a limited number of mechanisms are
involved, the number of quantities needed to represent the
behavior may be modest.

There are many reports relating the functional properties of
proteins to their physicochemical nature (7, 8, 16-18); see the
concept in Figure 1. Functional properties are thought to
arise from various combinations of physicochemical properties
(11, 17, 19). Physicochemical properties include viscosity,
surface activity, hydrophobicity, hydrophilicity, adhesion, and
cohesion, among others. The physicochemical properties them-
selves result from the structure of a protein, and some have
been related to the proportions of amino acids of different classes
(8). For example, the hydrophobic nature of proteins, which
has been associated with foaming and emulsification, results
from the proportion of amino acids with nonpolar side chains.
The ionic nature of proteins, which influences solubility and
water binding, results from the proportion of amino acids with
basic and acidic side chains. The content of some amino acids
determines aspects of protein folding, which impacts protein
shape and rigidity; these in turn influence viscosity. So,
ultimately, the amino acid content of a protein largely determines

ε ) b0 + b1∑z1 + b2∑z2 + b3∑z3 (4)

Figure 1. Concept of relationship between peptide functional and
physicochemical properties. Various physicochemical properties either
singly or in combination are responsible for functional properties.

∑zi ) ∑
X)1

20

ziXnX (5)
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the physicochemical properties, which determine the functional
properties; seeFigure 2.

Conceptually then, relationships between amino acid com-
position and physicochemical and functional properties can be
thought of as follows. Amino acid composition (i.e., the contents
of amino acids of various classes), as opposed to sequence,
influences physicochemical properties (e.g., hydrophobicity,
hydrophilicity, surface activity, viscosity, etc.), which in turn,
in various combinations, determines functional properties
(foaming, gelling, formation of films or glasses, binding of water
or lipids, emulsification, etc.). So, if physicochemical properties
can be predicted from amino acid composition, it should also
be possible to directly predict protein functional properties from
amino acid composition; seeFigure 3.

As described earlier, usingz-score sums to model a peptide
property that is known to be a function of a limited number of
amino acids worked well (3). The properties modeled (UV
absorbance and dye binding), however, were not functional
properties. In many cases with functional properties, there may
not be prior knowledge of particular amino acids that influence
the property. A broad brush approach is possible, however, by
computingz-score contributions (threez-sums) or ext-z-score
contributions (five ext-z-sums) from all of the amino acids that
a peptide contains (in most cases, some or all of the 20 coded
amino acids). This approach was attempted using data from a
paper that reported both physicochemical data (viscosity and
hydrophobicity) and functional property data (foam capacity)
for a number of well-characterized proteins (14). The principal
property sums were computed for the proteins used in this study;
seeTables 1and2.

Models of the physicochemical properties as a function of
the z-sums and ext-z-sums were calculated using PLSR. The
models were of the form:

or

PLSR can employ different numbers of components, also called
latent variables (4). As the number of latent variables increases,
the fit (R) increases, but after some point, the model validity,
usually expressed asQ, declines or fails to increase further. The
number of latent variables corresponding to this point is
considered to represent a reasonable balance between fit and
prediction ability known as the best prediction model. Results
for the best prediction models, chosen by cross-validation, that
relate amino acid principal property sums of proteins to
physicochemical properties are shown inTable 3. It is quite
apparent that the fits produced with the five ext-z-sums were in

each case much stronger than those obtained with the three
z-sums and that this approach to modeling was quite successful.
Clearly, information that is valuable for modeling these protein
properties resides in the fourth and fifth (as well as the first
three) amino acid PCs. The relationships between each observed
property and the equivalent values predicted from the ext-z-
sum models are shown inFigures 4-6. The coefficients for

Figure 2. Concept of relationship between amino acid composition and
peptide functional and physicochemical properties. Contents of amino acids
of different classes determine physicochemical properties, which in turn
determine functional properties.

property) b0 + b1∑z1 + b2∑z2 + b3∑z3 (6)

property)
b0 + b1∑z1 + b2∑z2 + b3∑z3 + b4∑z4 + b5∑z5 (7)

Figure 3. Concept of modeling peptide physicochemical and functional
properties from amino acid composition.

Table 1. z-Score Sums of the Proteins Used in the Townsend and
Nakai Study

protein no.a ∑z1 ∑z2 ∑z3

pepsin 371 18.71 −300.99 34.71
conalbumin 686 305.19 −363.08 −75.37
RNAase I 119 81.46 −14.5 −28.01
lysozyme 129 71.79 −54.23 −0.58
ovomucoid 186 115.06 −121.11 24
ovalbumin A 385 23.51 −221.54 −43.41
serum albumin 583 181.25 −199.95 −75
κ-casein 169 29.94 −65.28 0.26
â-casein 209 −25.22 −71.28 12.97
â-lacto-globulin 162 −5.29 −79.91 −31.04
trypsin 224 57.29 −166.69 8.32

a Number of amino acids in the protein.

Table 2. Ext-z-Score Sums of the Proteins Used in the Townsend and
Nakai Study

protein ∑z1 ∑z2 ∑z3 ∑z4 ∑z5

pepsin 9.66 −280.86 12.98 −274.37 96.59
conalbumin 290.1 −344.85 −84.45 −294.96 118.57
RNAase I 99.25 −11.25 −24.2 −20.77 3.97
lysozyme 72.66 −50.31 −2.69 −32.44 16.62
ovomucoid 145.76 −117.33 44.22 −108.6 8.5
ovalbumin A 0.58 −207.54 −81.63 −189.61 98.85
serum albumin 203.48 −188.79 −85.94 −257.84 91.65
κ-casein 8.56 −58.47 −34.26 −85.12 70.2
â-casein −76.65 −69.11 −45.01 −92.27 106.17
â-lacto-globulin −10.5 −76.81 −51.61 −90.86 48.15
trypsin 49.48 −157.16 −3.76 −128.19 51.71

Table 3. Summaries of PLS Best Prediction Fits Relating Amino Acid
Principal Property Sums of Proteins to Physicochemical Properties
(Data from Ref 14)

z-sum models ext-z-sum models

property compsa
z-sum

R
z-sum

Q compsa
ext-z-sum

R
ext-z-sum

Q

Bigelow hydrophobicity 1 0.512 0 2 0.856 0.763
exposed hydrophobicity 2 0.701 0.339 2 0.932 0.862
viscosity 1 0.483 0.385 1 0.737 0.682

a Number of PLS components.
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the fitted equations are shown inTables 4and5. All threez-sum
coefficients (Table 4) for the two protein hydrophobicity
measures have negative signs, indicating lower hydrophobicity
with increasing∑z1, ∑z2, or ∑z3 (corresponding to amino acid
hydrophilicity, molecular size, and electronic properties). The
viscosity model, on the other hand, had a positive sign for the
∑z1 coefficient but a very small magnitude. The arithmetic signs

of the ext-z-sum coefficients (Table 5) also had identical patterns
for the two hydrophobicity measures (positive for∑z2 and∑z5

and negative for the other three). In the viscosity model, the
signs were reversed for the∑z1 and∑z2 coefficients, although
the ∑z1 coefficient was again quite small.

The particular terms that are the most influential in the models
can be represented by a calculation made by the SIMCA-S
program that is called the VIP. The VIP values provide a better
indication of the influence of terms on the response than
comparing the magnitudes of the coefficients (15). The VIP
values for thez-sum and ext-z-sum models are shown inTables
6 and7. Thez-sum model for Bigelow hydrophobicity was too
weak to consider (Q) 0). The exposed hydrophobicity was a
better fit, and VIP values showed that∑z3 was most influential
followed by ∑z2. These parameters are thought to represent
electronic properties and molecular size. The ext-z-sum VIPs
(Table 7) show in part why the five term models were stronger
than the three term models; the∑z5 term, considered among
other things to represent electrophilicity, was very important in
all three modeled quantities. The∑z3 term, representing
electronic properties, was also very influential.

Of the three physicochemical properties modeled, viscosity
had the poorest fit. Viscosity must surely depend on protein
molecular size, one major aspect of which is the number of
amino acids in the molecule, as well as flexibility. Neither is
represented in this method of calculation, which may in part
explain the relatively poorer modeling performance for this
property. When an additional term indicating the number of
amino acids in a protein was added, it resulted in a slightly
stronger model for viscosity with thez-sum fit (Q ) 0.450 vs
0.385) but a slightly weaker model for the ext-z-sum fit (Q )
0.658 vs 0.682). Thez-sum term with the greatest influence on
viscosity was∑z2 (Table 6), which represents amino acid
molecular size, but the relationship was inverse (negative signed
coefficient in Table 4). The ext-z-sum term with greatest
influence on viscosity (Table 7) was∑z5 followed by∑z3 and
∑z4.

Townsend and Nakai (14) also reported foam capacity
measurements at different combinations of ionic strength and
pH and showed logarithmic relations to hydrophobicity. Separate
models of log(foam capacity) were constructed for each set of
conditions. The results for the foam capacity at different ionic
strengths, all at pH 7, are shown inTable 8. In each case, the
ext-z-sum model was stronger (in bothR and Q) than the
equivalentz-sum model. With bothz-score and ext-z-score
models, the model strength (RandQ) improved with increasing
ionic strength. The strongest model obtained was the ext-z-sum
model at ionic strength 0.20 (seeFigure 7). The VIPs for the

Figure 4. Model of Bigelow hydrophobicity data from ref 14 as a function
of ext-z-score sums of all 20 coded amino acids. R ) 0.856; Q ) 0.763.

Figure 5. Model of exposed hydrophobicity data from ref 14 as a function
of ext-z-score sums of all 20 coded amino acids. R ) 0.932; Q ) 0.862.

Figure 6. Model of viscosity data from ref 14 as a function of ext-z-score
sums of all 20 coded amino acids. R ) 0.737; Q ) 0.682.

Table 4. Regression Coefficients for the z-Score Sum Fits to
Physicochemical Properties in Table 3

property b0 b1 b2 b3

Bigelow hydrophobicity 7.452 −0.713 −0.167 −0.274
exposed hydrophobicity 1.768 −0.544 −0.327 −0.826
viscosity 72.107 0.084 −0.275 −0.240

Table 5. Regression Coefficients for the Ext-z-Score Sum Fits to
Physicochemical Properties in Table 3

property b0 b1 b2 b3 b4 b5

Bigelow hydrophobicity 7.452 −0.481 0.124 −0.361 −0.023 0.494
exposed hydrophobicity 1.768 −0.176 0.065 −0.566 −0.056 0.465
viscosity 72.107 0.002 −0.165 −0.233 −0.190 0.281

Table 6. VIP Values for the z-Score Sum Fits to Physicochemical
Properties in Table 3

property ∑z1 ∑z2 ∑z3

Bigelow hydrophobicity
exposed hydrophobicity 0.373 0.903 1.430
viscosity 0.389 1.273 1.109

Table 7. VIP Values for the Ext-z-Score Sum Fits to Physicochemical
Properties in Table 3

property ∑z1 ∑z2 ∑z3 ∑z4 ∑z5

Bigelow hydrophobicity 1.041 0.662 1.056 0.664 1.386
exposed hydrophobicity 0.468 0.821 1.323 0.864 1.269
viscosity 0.009 0.833 1.174 0.960 1.417
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z-sum models are shown inTable 9 and indicate that∑z2

(molecular size) had the greatest influence followed by∑z1

(hydrophilicity) except for the 0.01 ionic strength. The regression
coefficients and VIP values for the ext-z-sum models are shown
in Tables 10and11. Considering the VIP magnitudes and the
arithmetic signs of the coefficients, it can be seen that the terms
most influential in modeling foam capacity are in each case
∑z5 (where the positive signed coefficient indicates increasing
foam capacity with increasing electrophilicity), followed by∑z4

(here, the coefficient has a negative sign, indicating increasing
foam capacity with decreasing electronegativity) and∑z2

(increasing foam capacity with decreasing molecular size). Once
again, the utility of the fourth and fifth terms was evident.

Townsend and Nakai (14) also determined foam capacity at
one ionic strength (0.05) at three different pH values. These

data were also modeled (seeTable 12). At the pH 5 condition,
the bestz-sum and ext-z-sum models had similar predictive
abilities (Q). At the other two pH values, the ext-z-sum models
were much stronger. The model with the highestQ was the
ext-z-sum model at pH 7 (seeFigure 8), followed by the ext-
z-sum model at pH 9 (seeFigure 9). The coefficients and VIPs
for the z-sum models are shown inTables 13 and 14. The
relative VIP rankings showed the same patterns at the different
pH values.∑z2 was most important (and inversely related with
foam capacity) followed by∑z1 (although the signs were
different at the different pH values).

The ext-z-sum coefficients and VIPs are shown inTables
15 and16. Here, too, the rankings of the VIPs were different at
different pH values. At pH 5, the∑z2 and∑z4 VIPs were similar
and much higher than the other terms (both were inversely
related with foam capacity). At pH 7,∑z5 was most important,

Figure 7. Model of foam capacity data for pH 7.0 and ionic strength 0.20
from ref 14 as a function of ext-z-score sums of all 20 coded amino
acids. R ) 0.880; Q ) 0.831.

Table 8. Summaries of PLS Best Prediction Fits Relating Amino Acid
Principal Property Sums of Proteins to log(Foam Capacity) at Different
Ionic Strengths at pH 7 (Data from Ref 14)

z-sum models ext-z-sum modelsionic
strength compsa z-sum R z-sum Q compsa ext-z-sum R ext-z-sum Q

0.01 1 0.517 0.362 2 0.828 0.760
0.05 2 0.717 0.533 2 0.867 0.812
0.20 2 0.738 0.581 2 0.880 0.831

a Number of PLS components.

Table 9. VIP Values for the z-Score Sum Fits to log(Foam Capacity)
in Table 8

ionic strength ∑z1 ∑z2 ∑z3

0.01 0.012 1.662 0.488
0.05 1.041 1.270 0.549
0.20 1.056 1.257 0.552

Table 10. Regression Coefficients for the Ext-z-Score Sum Fits to
log(Foam Capacity) in Table 8

ionic strength b0 b1 b2 b3 b4 b5

0.01 2.106 −0.317 −0.124 −0.149 −0.234 0.446
0.05 2.117 −0.343 −0.135 −0.186 −0.234 0.451
0.20 2.379 −0.358 −0.138 −0.202 −0.229 0.454

Table 11. VIP Values for the Ext-z-Score Sum Fits to log(Foam
Capacity) in Table 8

ionic strength ∑z1 ∑z2 ∑z3 ∑z4 ∑z5

0.01 0.789 0.930 0.738 1.056 1.361
0.05 0.813 0.925 0.773 1.041 1.343
0.20 0.832 0.918 0.788 1.027 1.337

Figure 8. Model of foam capacity data for pH 7.0 and ionic strength 0.05
from ref 14 as a function of ext-z-score sums of all 20 coded amino
acids. R ) 0.866; Q ) 0.812.

Figure 9. Model of foam capacity data for pH 9.0 and ionic strength 0.05
from ref 14 as a function of ext-z-score sums of all 20 coded amino
acids. R ) 0.725; Q ) 0.682.

Table 12. Summaries of PLS Best Prediction Fits Relating Amino Acid
Principal Property Sums of Proteins to log(Foam Capacity) at Different
pH Values at Ionic Strength 0.05 (Data from Ref 14)

z-sum models ext-z-sum models

pH compsa z-sum R z-sum Q compsa ext-z-sum R ext-z-sum Q

5 1 0.650 0.556 1 0.672 0.547
7 2 0.716 0.535 2 0.866 0.812
9 1 0.420 0.237 1 0.725 0.682

a Number of PLS components.

Table 13. Regression Coefficients for the z-Score Sum Fits to
log(Foam Capacity) at 0.05 Ionic Strength and Various pH Values in
Table 12

pH b0 b1 b2 b3

5 1.173 0.210 −0.393 −0.187
7 2.116 −0.524 −0.854 −0.113
9 2.958 0.056 −0.232 −0.231
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with ∑z2 and ∑z4 similar in magnitude and quite a bit less
influential. The∑z1 coefficient reversed sign as compared with
pH 5. At pH 9, the∑z5 and ∑z3 term VIPs were the largest.
Obviously, the pH affects the charge on the amino acid side
chains and that impacts their influence on foam capacity and
modelability. The strength of the foam capacity models is
definitely influenced by the conditions under which the mea-
surements were made.

It was possible to model both physicochemical and functional
properties of proteins from their contents of all 20 coded amino
acids and amino acid principal properties. Clearly, it is possible
to directly model protein functional properties from amino acid
composition without the need to determine physicochemical
properties. It appears that a number of other functional properties
of proteins are likely to be modelable in this fashion.
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Table 14. VIP Values for the z-Score Sum Fits to log(Foam Capacity)
at 0.05 Ionic Strength and Various VIP Values in Table 12

pH ∑z1 ∑z2 ∑z3

5 0.753 1.408 0.671
7 1.040 1.272 0.548
9 1.205 1.210 0.290

Table 15. Regression Coefficients for the Ext-z-Score Sum Fits to
log(Foam Capacity) at 0.05 Ionic Strength and Various pH Values in
Table 12

pH b0 b1 b2 b3 b4 b5

5 4.1731 0.154 −0.261 −0.048 −0.253 0.082
7 2.116 −0.343 −0.136 −0.185 −0.233 0.451
9 2.958 −0.016 −0.141 −0.245 −0.180 0.292

Table 16. VIP Values for the Ext-z-Score Sum Fits to log(Foam
Capacity) at 0.05 Ionic Strength and Various VIP Values in Table 12

pH ∑z1 ∑z2 ∑z3 ∑z4 ∑z5

5 0.845 1.439 0.265 1.393 0.452
7 0.815 0.925 0.772 1.040 1.343
9 0.0798 0.709 1.231 0.906 1.469
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